Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Anal Chem ; 93(48): 16086-16095, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1500405

ABSTRACT

It is highly challenging to construct the best SERS hotspots for the detection of proteins by surface-enhanced Raman spectroscopy (SERS). Using its own characteristics to construct hotspots can achieve the effect of sensitivity and specificity. In this study, we built a fishing mode device to detect the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at low concentrations in different detection environments and obtained a sensitive SERS signal response. Based on the spatial resolution of proteins and their protein-specific recognition functions, SERS hotspots were constructed using aptamers and small molecules that can specifically bind to RBD and cooperate with Au nanoparticles (NPs) to detect RBD in the environment using SERS signals of beacon molecules. Therefore, two kinds of AuNPs modified with aptamers and small molecules were used in the fishing mode device, which can specifically recognize and bind RBD to form a stable hotspot to achieve high sensitivity and specificity for RBD detection. The fishing mode device can detect the presence of RBD at concentrations as low as 0.625 ng/mL and can produce a good SERS signal response within 15 min. Meanwhile, we can detect an RBD of 0.625 ng/mL in the mixed solution with various proteins, and the concentration of RBD in the complex environment of urine and blood can be as low as 1.25 ng/mL. This provides a research basis for SERS in practical applications for protein detection work.


Subject(s)
Binding Sites , Metal Nanoparticles , Spike Glycoprotein, Coronavirus/chemistry , COVID-19 , Gold , Humans , SARS-CoV-2
2.
The European respiratory journal ; 2020.
Article | WHO COVID | ID: covidwho-324353

ABSTRACT

BACKGROUND: Timely diagnosis of SARS-CoV-2 infection is a prerequisite for treatment and prevention. The serology characteristics and complement diagnosis value of the antibody test to RNA test need to be demonstrated. METHOD: Serial sera of 80 patients with PCR-confirmed COVID-19 were collected at the First Affiliated Hospital of Zhejiang University, China. Total antibody (Ab), IgM and IgG antibodies against SARS-CoV-2 were detected, and the antibody dynamics during the infection were described. RESULTS: The seroconversion rates for Ab, IgM and IgG were 98.8%, 93.8% and 93.8%, respectively. The first detectible serology marker was Ab, followed by IgM and IgG, with a median seroconversion time of 15, 18 and 20 days post exposure (d.p.e) or 9, 10 and 12 days post onset (d.p.o), respectively. The antibody levels increased rapidly beginning at 6 d.p.o. and were accompanied by a decline in viral load. For patients in the early stage of illness (0-7 d.p.o), Ab showed the highest sensitivity (64.1%) compared to IgM and IgG (33.3% for both, p<0.001). The sensitivities of Ab, IgM and IgG increased to 100%, 96.7% and 93.3% 2 weeks later, respectively. When the same antibody type was detected, no significant difference was observed between enzyme-linked immunosorbent assays and other forms of immunoassays. CONCLUSIONS: A typical acute antibody response is induced during SARS-CoV-2 infection. Serology testing provides an important complement to RNA testing in the later stages of illness for pathogenic specific diagnosis and helpful information to evaluate the adapted immunity status of patients.

SELECTION OF CITATIONS
SEARCH DETAIL